JMCB团队揭示衰老进程中hnRNPA与TERRA的相互作用机制,揭示了端粒稳定性的关键环节:端粒加帽过程 研究揭示:JMCB团队发现并解析了衰老过程中hnRNPA和TERRA的协同调控机制,并揭示了端粒稳定性的关键环节

2024-10-23 生活常识 关注公众号
JMCB团队揭示衰老进程中hnRNPA与TERRA的相互作用机制,揭示了端粒稳定性的关键环节:端粒加帽过程

研究揭示:JMCB团队发现并解析了衰老过程中hnRNPA和TERRA的协同调控机制,并揭示了端粒稳定性的关键环节
TERRA(端粒重复序列RNA)是由hnRNPA1蛋白组成的非编码RNA,能够调控和维持端粒的稳定性。hnRNPA1蛋白能够识别并结合到端粒单链DNA上,使其无法与RPA结合到端粒上。最后,由端粒转录的长链RNA TERRA结合hnRNPA1,释放DNA的单链区。

随着科学技术的发展,我们的生活方式正在发生巨大的变化。其中,生物学领域的研究成果已经为我们提供了新的视角去理解生命的过程和现象。而在此背景下,一门名为【TERRA(端粒重复序列RNA)】的新兴学科也得到了广泛关注。
TERRA是由hnRNPA1蛋白组成的非编码RNA,其主要功能是调控和维持端粒的稳定性。hnRNPA1蛋白负责识别并结合到端粒单链DNA上,使它无法与RPA结合到端粒上。这种独特的特性使得TERRA在疾病的发生和发展中发挥着关键的作用。
然而,当TERRA过度表达时,会导致端粒长度缩短,从而引发一系列的问题。如衰老、肿瘤等。因此,了解TERRA的功能和作用机制对于预防这些疾病的出现具有重要的意义。
那么,为什么hnRNPA1蛋白会选择tRNA作为合作伙伴来参与端粒的稳定呢?这主要是因为tRNA有着一个特殊的结构,即3'末端有一个帽子结构。这个帽子结构可以保护tRNA上的氨基酸不被剪切掉,同时也可以防止RNA聚合酶过于接近,造成双链不稳定。
在端粒上,hnRNPA1蛋白会先通过一种称为非构象稳定性的机制,将hnRNPA1从一个成熟的端粒转移到另一个未成熟端粒上。然后,hnRNPA1蛋白就会开始识别端粒的单链DNA,并将其绑定到自己的化学本质上。接着,hnRNPA1蛋白会开始识别并结合到端粒上的RPA,形成一个稳定的复合体。
最后,由端粒转录的长链RNA TERRA会与hnRNPA1蛋白质一起,通过另一种叫做半胱氨酸转移酶的作用,将RPA从复合体中解离出来,释放出DNA的单链区。
总的来说,TERRA是一种复杂的非编码RNA,其功能是在端粒的稳定性和肿瘤的发生中起到重要作用。通过对TERRA的研究,我们可以更好地理解生命的秘密,从而开发出更有效的治疗方法。在未来,我们期待看到更多的研究成果来揭示这个神奇的领域中的更多秘密。

上一篇:转转和闲鱼谁更胜一筹?
下一篇:北证A股超两成公司15天股价翻倍,10倍牛股巨震一日蒸发42亿元
更多更酷的内容分享
猜你感兴趣
吕志民/许大千团队揭示新型代谢酶FBP1在端粒长度与细胞衰老之间关系,助力肿瘤精准治疗新机制的发现与探索

吕志民/许大千团队揭示新型代谢酶FBP1在端粒长度与细胞衰老之间关系,助力肿瘤精准治疗新机制的发现与探索

端粒是位于染色体末端的DNA序列和蛋白质结构,其稳定性和参与的细胞分裂过程紧密相关。端粒的长度可影响肿瘤发生和发展,并由端粒反转录酶(TERT)进行逆转录生成和延长,而控制其作用的信号机制尚不完全清楚。端粒长度的改变受TERT的磷酸化修饰调控,KB(AKT)、FFP1和FFP2等酶的蛋白磷酸化途径可能参与到端粒延长的过程中。研究人员前期发现FBP1具有非典型功能,如间接抑制PPARα介导的脂肪酸氧化相关基因的转录,但关于其其它非代谢功能及其与肿瘤生长的关系还有待进一步探究。近期发表的研究揭示,FBP1可以作为蛋白磷酸酶去磷酸化组蛋白H3 T11磷酸化,这一新的作用机制可能引发细胞的特定变化,对肿瘤的特征、机理乃至临床应用产生重要影响。论文题目为《Fructose-1,6-bisphosphatase 1: an unexpected functional domain》。

生活常识 03.30
中南大学科研团队揭示免疫细胞在抗衰老中的作用新机制——专家解读

中南大学科研团队揭示免疫细胞在抗衰老中的作用新机制——专家解读

1. 老年疾病的风险因素。 2. 帮助提高治疗效果。 3. 提出新的研究目标。 摘要: 一项研究揭示了衰老如何通过细胞外囊泡途径传播到多个组织,引发一系列衰老相关的疾病。使用降脂药物,特别是非诺贝特,可以显著抑制这种效应,从而有助于延缓衰老并抵抗相关疾病。这一成果有助于开发更有效的治疗方法,特别是在治疗老年疾病方面。

生活常识 10.20
清华大学沈晓骅团队揭示核RNA稳态对细胞命运和衰老的影响系统性协调机制

清华大学沈晓骅团队揭示核RNA稳态对细胞命运和衰老的影响系统性协调机制

清华大学医学院沈晓骅团队发表论文称,核RNA稳定促进细胞生命周期和衰老系统性协调, RNA外切体耗竭导致核RNA破坏导致系统性功能下降。

生活常识 04.18
最新研究证实:Omega-3对保护端粒酶及延缓衰老有重要作用

最新研究证实:Omega-3对保护端粒酶及延缓衰老有重要作用

产品:如亚麻籽油、胡桃油、核桃油等Omega-3补充剂。保健食品:富含Omega-3的食物胶囊或营养粉,可以作为日常饮食的一部分。 关键词:Omega-3;心血管健康;大脑功能;抗衰老;端粒酶;衰老;端粒延长;炎症反应;抗氧化反应;基因表达;营养干预。

生活常识 05.20
怀9胞胎女子明日减3胎仅留2胎,创造吉尼斯世界纪录!

新世界纪录诞生:怀九胞胎女子明天只减3胎仅留2胎

怀9胞胎女子明日减3胎仅留2胎,创造吉尼斯世界纪录! 新世界纪录诞生:怀九胞胎女子明天只减3胎仅留2胎

信息: 1. 江西南昌25岁女子怀上9胞胎引发热议。 2. 女子腹中胎儿众多引热议。 3. 女子丈夫决定再减3胎,只留2胎。 4. 南昌女子怀上九胞胎。

生活常识 11.22
新一代科技助力植物识别:机器人细胞press揭示全新的植物身份解锁技术

新一代科技助力植物识别:机器人细胞press揭示全新的植物身份解锁技术

中国科学家已开发出能通过电极“触摸”植物叶子识别物种的新机器人,其准确度高达97.7%,并对紫荆花在不同生长阶段的叶子进行了准确识别。此设备有望改变作物管理和生态系统研究,并为早期疾病检测提供可能性。但目前仍存在一些限制,如可识别复杂种类植物的能力有限。研究人员计划扩大植物物种数据库,以便更好地训练机器学习算法。

生活常识 11.22
提升专业水平:超导材料简介与应用场景剖析

提升专业水平:超导材料简介与应用场景剖析

会导致磁通变化而非全零,因此不能被称为超导体。而“绝对零电阻”则意味着该材料在低温下电阻为零。以下是关于超导的基本性质和各类超导材料的一般信息: 超导现象的发现于1911年,当海克·卡末林·昂尼斯等人测量金属汞在低温下的电阻时发现到4.2K时突然降低到了10-5Ω以下。 基于这一发现,科学家们提出了“绝对零电阻”的概念。在Tc = 4.2K时,金属汞的电阻达到了最低,这个最低值就是绝对零电阻。然后昂尼斯因为氦气的成功液化和超导电性的发现获得了诺贝尔物理学奖。 通过低温物理实验手段的发展,人们发现了许多金属单质都具备超导电性,并且可以根据不同的方法来确定是否存在绝对零电阻。 此外,研究人员还发现了一些具有完全抗磁性的超导材料,这些材料能够将体内的磁通线全部排出去,同时也具有负的磁化响应,这就是所谓的迈斯纳效应。对于理想的导体来说,只要温度足够低,就能达到绝对零电阻的状态。 总的来说,超导是一个重要的科学领域,它的发现对于基础科学和应用研究有着重大的影响。

生活常识 11.22
微光之下:御夫座一颗恒星可能在接下来的几周内暂时消失

微光之下:御夫座一颗恒星可能在接下来的几周内暂时消失

11月24日,中华人民共和国仁神星将以掩星的形式出现在我国南方地区,此次事件由天体之间相对运动产生。这次掩星事件可能会出现多场小行星掩恒星的天象,这些天象通常会出现在农历每个月的月中。借助专业的望远镜观测,人们可以更精确地计算出恒星和小行星的形状、轨道信息等。该事件的意义在于推动天文学研究的发展,并有助于提高人们对宇宙的认知和理解。

生活常识 11.22
下周冷空气南下 大海将上演大浪至巨浪的过程

下周冷空气南下 大海将上演大浪至巨浪的过程

海上作业船舶注意加强防风防浪准备;未来几天东北太平洋将出现多次大浪,建议做好应对措施。

生活常识 11.22
黄梅生校长和他的348名学生娃:严禁让他们成为‘野孩子’

家长需严管:348个学生娃,黄梅生校长已经严禁他们进入互联网世界!

黄梅生校长和他的348名学生娃:严禁让他们成为‘野孩子’ 家长需严管:348个学生娃,黄梅生校长已经严禁他们进入互联网世界!

江西德仁苑校长黄梅生自2008年起免费养育了348个“困境儿童”,其中12个孩子今年考上了大学。他最早关注到困境儿童是在2000年,当时他担任教育局局长,发现一个孤儿家庭的生活困境。为了解决这些孩子的生活问题,黄梅生创办了德仁苑,不收取孩子们一分钱,依靠社会捐赠和自我筹集资金维持运作。他的教育理念是关注孩子的优点,鼓励他们成为普通、遵纪守法、感恩社会的人。尽管面临诸多压力,黄梅生仍坚持为这些孩子提供一个安全、健康、快乐的成长环境。目前,德仁苑迎来了了一批又一批的孩子,也送走了了一批又一批的孩子。他们最早叫他“校长爸爸”,现在叫他“校长爷爷”。有人说黄梅生傻,黄梅生却说,这是一个关于爱的故事。"野孩子"需要的是爱,这是黄梅生创办德仁苑的原因。他通过自己的爱心和责任感,为这些困境儿童提供了改变命运的机会。

生活常识 11.22
揭秘药物奥秘:麦角新碱,原来是我这个坏孩子的秘密武器

揭秘药物奥秘:麦角新碱,原来是我这个坏孩子的秘密武器

麦角新碱是一种用于治疗阴道产后出血的药物,可用于加快子宫复原和加速身体恢复。然而,它也被发现可以合成强力致幻剂——麦角酰二乙胺(LSD),这种药物能引发强烈的感官体验和改变。由于其强烈的毒性,LSD成为易制毒药品的重点管控对象。药品管控对于防止易制毒药品流入社会带来危害至关重要。

生活常识 11.22
人民楷模都贵玛的养子与阔别已久的亲人重逢

人民楷模都贵玛的养子与阔别已久的亲人重逢

扎拉嘎木吉是他第一个妈妈培养出来的孩子,后来由于各种原因他被领养了。他于5月7日在摄影师连振的陪同下找到了他的新妈妈——杭州的杭巧云。经过一系列的检查和核实,他们都成功配对成功。扎拉嘎木吉十分感激都贵玛,也对姐姐表示敬意。他也知道回家的道路困难重重,但他从未后悔,因为他感到很幸运能够有现在的生活。扎拉嘎木吉和他的姐姐带着对家乡深深的思念和对未来的期待踏上回家的路。

生活常识 11.22
网络暴力:这四种容易被忽视的家庭暴力形式可能导致孩子患上抑郁症和双相障碍

网络暴力:这四种容易被忽视的家庭暴力形式可能导致孩子患上抑郁症和双相障碍

肢体暴力。

生活常识 11.22
中国成功实施首次猪器官基因编辑移植手术:将猪肾和肝移植进人体!

中国成功实施首次猪器官基因编辑移植手术:将猪肾和肝移植进人体!

中国成功为猪肾和肝脏移植,并且复旦大学附属中山医院在器官移植领域进行了多项技术创新,但仍面临器官短缺问题。朱同玉团队提出的创新诊疗模式有可能提高移植后患者的存活质量和生活满意度。 此外,论文指出全球器官移植面临的最大挑战之一是可供移植的器官短缺。尽管中国政府已经启动器官捐献试点并取得显著成果,但与发达国家相比,中国的器官捐献率仍有待提高。 该文章还指出,中华医学会等组织已发起倡议呼吁建立一个公平、透明和高效的器官捐赠与分配系统,以解决中国器官短缺的问题。

生活常识 11.22