北京中科大团队研究出新型电解系统,造出大量甲酸,用于燃料电池。

2024-03-18 生活常识 关注公众号

近日,中国科学技术大学熊宇杰教授和团队开发了一种激光照射方法,借此造出一种晶格畸变铋催化剂。

与此同时,他们还开发出一套新型电解装置,在配备湿热通风收集系统的膜电极组件上,成功实现了高浓度纯甲酸溶液的生产,并且可以连续稳定运行超过 300 小时。

即在 200mAcm-2 的工业级电流密度之下,通过 300 小时的连续电化学二氧化碳还原反应,就能生产高浓度的甲酸。

(来源:Angewandte Chemie International Edition)

为了评估这一系统的实用性,课题组进行了全面的技术经济分析和生命周期评估,结果显示本次方法有潜力替代目前主流的甲酸生产方法。

为了进一步证明本次系统的实用性,他们直接利用所生产的甲酸溶液,为空气呼吸式甲酸燃料电池提供动力。

结果发现在无需进行纯化处理的前提之下,就能获得 55mWcm-2 的功率密度,实现高达 20.1% 的总体能量效率。

通过此,课题组描述了一种通过电化学还原二氧化碳反应直接生产甲酸、并驱动燃料电池的方法,在发展电催化二氧化碳转化驱动甲酸能源经济上具有一定的可行性。

这种利用电催化二氧化碳还原来生产纯甲酸溶液的方法,不仅有助于降低碳排放、实现碳固定的目标,而且符合国家的双碳战略。

此外,甲酸也可作为一种燃料,用于驱动甲酸燃料电池,因此有望应用于新能源汽车等领域。

由此可见,本次所生产的甲酸不仅可以作为基础化学品用于工业生产,还可以直接用作燃料,具有广阔的应用前景。

图 | 熊宇杰(来源:熊宇杰)

据了解,低碳电力的储存和利用、以及交通运输的脱碳,是未来能源转型进入低碳经济的关键组成部分。在这个背景之下,作为一种潜在的可再生能源储存和转换解决方案,甲酸能源引起了人们的广泛关注。

作为一种基本型有机化工原料,甲酸在农药、皮革、染料、医药和橡胶等工业中具有广泛的应用。甲酸不仅具有高能量密度和良好的化学稳定性,而且其生产过程可以通过利用二氧化碳等温室气体实现碳循环。

因此,甲酸能源被视为可实现碳中和的关键技术之一,有望为低碳经济的发展提供重要支持。

通过电化学二氧化碳还原生产甲酸,有望成为甲酸经济中碳循环的关键环节。

但是,在很大程度上,其实际可行性受到电催化合成甲酸的浓度以及产量所限制。

同时,目前甲酸的市场价位较高,因此利用电化学的方式来生产绿色甲酸具有相当大的前景。

多年来,熊宇杰课题组一直致力于二氧化碳的可再生能源催化转化。在这项工作中,他们选择采用电催化的方式,主要是因为电力的来源广泛,可以利用间歇性能源比如风能、太阳能以及潮汐能等来进行发电,从而实现将电催化二氧化碳转化为化学品、或转化为燃料的目标。

基于此,他们首先确定利用电催化的方式来进行二氧化碳转化,以实现电催化二氧化碳还原生产特定化学品的工业应用。

然而,电催化二氧化碳还原所产生的产物较为复杂,往往包含一氧化碳、甲酸、甲烷、乙烯以及乙醇等。

经过一系列调研之后,他们发现尽管利用电催化二氧化碳还原制备的 C2+ 产物市场价值更高,但是产生 C2+ 产物需要更多的电子,导致最终需要输入的电能更多,在制备成本上的性价比并不高。

与之相比,两电子过程产生的一氧化碳和甲酸在经济性上更为优越。特别是相比一氧化碳,甲酸更容易被分离,因此后者具有较低的运输成本和存储成本。

于是,该团队决定沿着“电催化二氧化碳还原产生甲酸”这一方向前进。确定大方向之后,则需要选择合适的电催化剂。

经过调研之后,他们发现目前可以用于电催化二氧化碳还原产甲酸的催化剂,主要是锡、铋、铟、铅等基催化剂。

鉴于铋的市场价格更低、无毒且具有良好的催化性能,于是课题组选择铋作为目标催化剂。

然而,在目前文献报道之中,将铋基催化剂用于电催化二氧化碳还原生产甲酸时,电流密度的较小。

即便在大电流之下,甲酸的选择性也比较低,难以满足工业应用的需求。因此,开发高效的铋基催化剂,成为他们的下一个任务。

为了增强铋基催化剂的性能,他们决定向铋中引入缺陷。这是因为催化剂中的缺陷可以有效调控其电子结构,改善对于中间体的吸附,从而增强选择性。

同时,缺陷的引入还能产生更多的催化剂中不饱和位点,进一步增强性能。通过多次实验,他们发现可以利用激光辐照方法,合成一种非晶态的氧化铋前驱体,这种前驱体经过电化学重构之后,可以生成富含缺陷结构的金属铋催化剂。

这种催化剂不仅具有高活性,而且具有高甲酸选择性,非常容易进行批量化生产。

后来,他们发现由于电解质的缘故,导致所生成的甲酸多以甲酸盐的形式存在,同时浓度也比较低,而这将大幅增加后续的分离成本。因此,他们希望能直接实现高浓度纯甲酸溶液的大批量合成。

为此,他们耗费将近一年的时间来做实验。起初,实验结果显示尽管可以获得纯甲酸溶液,但是甲酸的法拉第效率一直很低。

经过大量实验之后,课题组终于提高了甲酸的法拉第效率。不过,他们又遇到了新的问题:所设计的反应器稳定性较差。

于是,他们耗费半年多时间进行改进,最终获得了较为稳定的电解池性能,并成功获得了高浓度的纯甲酸溶液。

(来源:Angewandte Chemie International Edition)

最终,相关论文以《二氧化碳电解浓甲酸直接驱动燃料电池》(Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell)为题发在 Angewandte Chemie International Edition(IF 16.6)。

Zhang Chao 是第一,中国科学技术大学熊宇杰教授和刘敬祥教授、以及中国地质大学(武汉)蔡卫卫教授担任共同通讯。

图 | 相关论文(来源:Angewandte Chemie International Edition)

目前,他们仅在实验室验证了上述结果。接下来,课题组会将整体系统进行进一步的放大,继续发展基于这一系统的实际应用。

同时,他们将开发面积在 100cm2 以上的电化学反应器,并将其组装成电堆,真正实现纯甲酸溶液的大规模生产,推进电催化二氧化碳还原产甲酸的工业化应用。

另据悉,目前熊宇杰的论文总引用次数为 40000 余次,H 指数 100,曾入选科睿唯安全球高被引科学家榜单、全球前 2% 顶尖科学家榜单、以及爱思唯尔中国高被引学者榜单。

这主要基于他在“多场多相催化化学”方面的成果,尤其是基于多场耦合和多相流动条件下的催化机制及其应用的成果。

具体来说,他和团队曾创制了表界面结构可控的复合催化材料和杂化催化材料,实现了催化反应的光、电、磁、热等多物理场调控,发展了分子转化过程的能量耦合机制。

同时,还曾设计可被模块化定制的仿生催化器件,实现了催化体系的传质和传能过程强化,发展了基于多相流动控制的应用系统。

与此同时,熊宇杰还是东盟工程与技术科学院外籍院士,并担任安徽师范大学党委常委、副校长等职务。

参考资料:

1.Zhang, C., Hao, X., Wang, J., Ding, X., Zhong, Y., Jiang, Y., ... & Xiong, Y. (2024). Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell.Angewandte Chemie International Edition, e202317628.

运营/排版:何晨龙


本文是一篇关于中国科学技术大学熊宇杰教授和他的研究团队开发了一种新型电解装置,成功制造出高浓度纯甲酸溶液,并在此基础上研究并成功开发了一种电化学二氧化碳还原生产甲酸的新方法。这种方法将二氧化碳的分解转化为甲酸,然后通过电解得到甲酸,并能够直接驱动燃料电池。研究表明,这种新方法在电催化二氧化碳还原过程中有着较高的经济效益和应用前景。此外,熊宇杰教授的研究工作还涵盖了多项领域,包括表界面结构可控的复合催化材料和杂化催化材料的开发、分子转化过程的能量耦合机制的设计、以及基于多相流动控制的应用系统的研究。这些研究工作的成功也为未来的能源技术和环保技术的研发提供了重要的理论和技术支持。

上一篇:李菲儿一撒娇,纪凌尘都变可爱了?“综艺混子”的遮羞布都遮不住了
下一篇:女演员长相有多重要?看《烈焰》陈乔恩和马苏,对比很直观
更多更酷的内容分享
猜你感兴趣
北京大学研发出自插层材料,可用于新能源存储与电子器件领域

北京大学研发出自插层材料,可用于新能源存储与电子器件领域

北京大学教授赵晓续和他的团队成功打造了一种自插层材料,具有良好的可调控性和潜在的应用领域,如能源存储、催化及电子器件等。该材料在研究过程中取得了一些积极成果,但在实际应用中还需进一步实验验证,如提高其在能源存储和转换、催化以及电子器件等方面的可靠性和稳定性。此外,课题组还将利用AI技术进行更深入的探索,比如图像超分辨率、去噪、晶体结构生成和材料性能预测等。赵晓续认为这种自插层材料为新型功能材料的研究打开了一扇新的大门,有可能推动其在这些领域的广泛应用。

热点资讯 11.03
中国科研团队成功研发出‘火星电池’,或将开启太空探索的新篇章

中国科研团队成功研发出‘火星电池’,或将开启太空探索的新篇章

中国科学家新研发“火星电池”,采用火星大气成分为燃料,可实现高能量密度和长循环性能,已发表在《科学通报》上。此电池在0摄氏度低温下具有373.9 Wh/kg的容量和1375小时的循环寿命,适合用于火星环境。

生活常识 09.02
北京大学科研团队揭示乳酸驱动癌症恶病质的全新机制

北京大学科研团队揭示乳酸驱动癌症恶病质的全新机制

北京大学肖瑞平及其团队近期发表的研究揭示了乳酸在癌症恶病质中的作用,认为乳酸可能引发癌疾症状并诱发肌肉营养不良。研究发现,人体内存在GPR81蛋白,它在脂肪组织中高表达,在肿瘤患者的体内,脂肪组织中乳酸水平偏高与脂肪组织质量减低有关。通过消除GPR81蛋白,可缓解肿瘤引起的各种不良反应,如体重下降、脂肪组织重塑等。这项研究有助于我们更好地理解癌症恶疾的发展机制,并寻求有效的治疗方案。

生活常识 05.06
青年科研团队打破传统,研制出高科技高能水系电池:复旦‘青椒’探索创新电池领域新风口

青年科研团队打破传统,研制出高科技高能水系电池:复旦‘青椒’探索创新电池领域新风口

晁栋梁是中国科学院院士赵东元教授指导下,复旦大学化学与材料学院先进材料实验室青年研究员,成功实现水系电池在能量密度上的突破,开发出新型锌基、锰基、锡基、硫基水系电池体系。此领域的研究一度不被大众看好,但晁栋梁却将目光投向了当时并未得到广泛关注的水系电池领域。目前,他已经成为中国新能源汽车的重要推手之一。

热点资讯 05.22
‘人像识别’找到被拐17年的孩子:一种寻亲过程的创新技术应用

‘人像识别’找到被拐17年的孩子:一种寻亲过程的创新技术应用

发生的3起拐卖儿童案件展开调查。经过大量走访调查,警方最终找到了3名被拐儿童,并成功将其带回家人怀抱。在这17年里,三个家庭付出了巨大的努力,期盼与失散多年的亲人重逢。这次团圆活动也让这三个破碎的家庭感受到了希望和温暖。在这个过程中,警方坚决打击拐卖犯罪行为,保护好每一个受骗的家庭。

生活常识 11.23
男孩只剩下一个蛋蛋,身体健康是否还能前行?

男孩只剩下一个蛋蛋,身体健康是否还能前行?

事件起因是数据颜色主题的改变,其中心热点是红色和橙色。

生活常识 11.23
肥胖记忆,摄入食物反报复? Nature揭示隐藏在人体中的秘密

肥胖记忆,摄入食物反报复? Nature揭示隐藏在人体中的秘密

肥胖成为全球一大问题,严重威胁着人类的生命长度。针对肥胖,减重过程是一个持久战,需要耐心和科学策略。新的研究揭示了肥胖的分子记忆机制,减肥手术后脂肪细胞仍能记住曾经的肥胖状态。第一、二组样本为接受两步减肥手术的患者,分别经历袖状胃切除术和胃旁路手术;第三组样本为健康对照者,进行对比分析。这些研究成果有助于科学家深入理解肥胖并提出更有效的治疗方案。

生活常识 11.23
超速运行:在行走与跑步之间,选择最省力的方式

超速运行:在行走与跑步之间,选择最省力的方式

起”的方式踏出第一步,然后迈开右腿。最后,收腹抬头,保持稳定的身体姿势,全程保持微笑。这个基本的跑姿有助于提高运动效率和安全性。 关于超慢跑的效果,专家们认为是值得推荐的运动方式。它不仅能帮助人们燃烧脂肪、塑造身材,还能有效降低慢性疾病的风险,如心脏病和糖尿病。超慢跑的低强度、长时间特性使得它比其他类型的运动更为适合大众,尤其适合长期坐办公室的人群。此外,由于超慢跑对膝关节的冲击较小,因此对膝关节问题的人群也较为友好。但是,需要注意的是,超慢跑并非适合所有人,特别是有某些疾病(如骨质疏松)的人群。因此,在开始任何新的运动计划之前,最好先咨询医生的意见。

生活常识 11.23
全球医疗危机:癌症与药物研发的双刃剑,面对死亡人数的警告,我们该如何应对

全球医疗危机:癌症与药物研发的双刃剑,面对死亡人数的警告,我们该如何应对

药明康德是全球健康产业的领导者,其目标是通过CRDMO模式和先进的感染性疾病新药研发赋能平台来应对全球面临的重大健康威胁——耐药细菌带来的疾病威胁。该公司的目标是在2025年前解决全球30%的抗菌药物耐药问题。在其"即刻行动"会议上,AMR被列为全球十大健康挑战之一,需要立即采取紧急行动。药明康德的内容团队将继续关注AMR的最新发展并呼吁社会各界共同努力,以保护人类的健康。

生活常识 11.23
浙江大学声明,冷冻馒头并非禁食食品

浙江大学声明,冷冻馒头并非禁食食品

系统工程与食品科学学院副院长 刘东红表示,浙大并没有做过冷冻馒头产生黄曲霉毒素的研究。 说明: 冷冻环境不适宜黄曲霉菌的生长,且一般家用冰箱的冷冻温度在零下18℃,湿度也相对较低,而不符合黄曲霉菌产生毒素的条件。同时,网传视频认为冷冻馒头可以吃,这并不科学,是对该事件的一种误导。

生活常识 11.23
变废为宝:从旧衣物中制作为地砖的创新方法

变废为宝:从旧衣物中制作为地砖的创新方法

澳大利亚研究人员正在研发一种方法,把废弃衣物变为建筑材料。他们从慈善垃圾箱收集衣物,并经过化学处理将其粉碎为平板。这些平板具有良好的坚固性和防水性,且可燃性极低。此外,他们还在其中添加了锯末等其他材料,以提高其性能。目前,这些平板已经可以用于室内装修。

生活常识 11.23
熊猫斩谣:利用科技手段探索未知文化的新途径

熊猫斩谣:利用科技手段探索未知文化的新途径

都崇州公安已依法对叶某强处以行政处罚。这两起案例均是因为个体为了私利,在网络上编造虚假信息,误导公众,产生了不良的社会影响。这些行为不仅损害了公众的利益,还严重扰乱了网络环境。因此,希望大家能够提高警惕,理性对待网络信息,避免被虚假信息所误导。

生活常识 11.23
乔治·丘奇研发新型抗衰老mRNA疗法:胶原蛋白生成提高200%,让您重新焕发光彩!

乔治·丘奇研发新型抗衰老mRNA疗法:胶原蛋白生成提高200%,让您重新焕发光彩!

哈佛大学医学院George Church等人在预印本平台上发表论文称,人类皮肤通过 mRNA 研究揭示了基底干细胞中 ATF3 是皮肤衰老的关键调控因子。这项研究表明,随着年龄增长,ATF3 会降低并改变角质形成细胞介导的成纤维细胞的胶原蛋白生成。他们开发了一种针对 ATF3 靶向的 mRNA 行为,显著降低了皮肤衰老水平,同时也大幅增加了成纤维细胞胶原蛋白生成水平。这对于理解皮肤衰老的本质和提出新的治疗策略具有重要意义。这项研究鼓励更多关于如何通过 mRNA 进行皮肤再生的研究。

生活常识 11.23
马斯克:关于火星定居的乐观展望或悲观预测?

马斯克:关于火星定居的乐观展望或悲观预测?

很抱歉,你的文本超过了我的限制。我可以为你提取一句话概括,但是这个句子概括可能会有些过于宽泛。 根据文章内容,埃隆·马斯克未来30年内定居火星的计划可能失败,原因包括火星环境恶劣、火星重力高于地球、火星土壤富含高氯酸盐、大气层稀薄,以及火星与地球间的通信延迟可能影响紧急情况处理。此外,作者认为火星上有复杂的生态系统,包括潜在的微生物和非人类活动,这将构成需要大量研究的问题。同时,作者强调了存在定居火星的风险和不确定性,提醒读者应谨慎对待这个目标。

生活常识 11.23