科学家利用花粉提取新研发出单分散乳液技术,双重防护活性物质。

2024-03-24 生活常识 关注公众号

乳状液,光听名字可能让你感到陌生。但如果你经常喝乳制品、吃蔬菜沙拉、用乳液护肤品,那其实乳状液算是你形影不离的“生活好朋友”。

在化妆行业中,乳状液常用于润肤霜、洁面乳等产品中,起到提供滋润和保湿的效果。

在食品行业中,乳状液常用于制备乳制品、调味品和沙拉酱等产品。

在制药行业中,乳状液通常用于口服药物或外用药物的制备,有助于药物的稳定性和吸收。

乳状液,是由互不相溶的水相、油相、乳化剂构成的特殊分散体系。它能使一种液相(比如油相)经过乳化之后,以众多微米级小液滴的形式分散于另一液相(比如水相)。

总的来说,乳状液是一种广泛应用的混合物,具有多种用途和功能。

然而,此前想要使水-油自发地形成乳状液(乳液)分散体系是比较困难的。

原因在于:水油混合增加了液体-液体的界面,以至于提高了混合体系的整体能量。

所以,最常见的乳化方式便是搅拌与高速剪切,通过将液体剪切成小液滴后,小液滴又随即被乳化剂稳定,从而形成乳液。

但是,搅拌或高速剪切对于液体的作用力不是均匀的,于是便会让所形成的乳液小液滴的尺寸分布不均一,可能小至 1-2 微米,也可能大至几十甚至上百微米,严重影响了乳液的整体性能和相关应用。

而乳液又常被用作软模板,来制备微胶囊和微球。而后者在药物递送、生物医学检测、功能材料等领域应用十分广泛。因此,科研工们对单分散乳液的研究从未止步。

目前,单分散乳液的主流制备方式有微流控与膜乳化。

微流控技术,涉及到微通道的设计、制作、以及液体流速的匹配条件,该技术能从微通道中制备出一颗颗单分散的乳液液滴并加以收集。

膜乳化技术,则利用膜层材料中孔洞的设计,使流经膜层的液体以均一尺寸进入另一分散相,从而达到制备均一乳液的目的。

单分散乳液,迎制备新方法

不过,上述两种方法各有优劣。基于此,江南大学教授蒋航和合提出一种制备单分散乳液的新方法。相比传统方法,它能省去设计微通道与膜孔的步骤。

图 | 蒋航(来源:蒋航)

特别地,本次方法仍然建立在传统的剪切乳化法上,不需要增加额外的辅助设备与器件。同时,他们很好地利用了大自然的馈赠——天然蜂花粉。

蜂花粉来源广泛、种类繁多。最重要的是,同一品种的蜂花粉其微观形貌和尺寸都十分均一,且拥有十分稳定的花粉外壁。

于是,他们将蜂花粉以一颗颗微粒的形式均匀分散在水中,并将其作为水相。然后,将疏水二氧化硅纳米颗粒的 D5 硅油分散液作为油相,这时二氧化硅纳米颗粒充当了界面稳定的作用。

在高速剪切乳化时,水相仍然会被剪切为一颗颗大小不同的小液滴并分散于油相中。不同的是,蜂花粉的加入使一部分水相液滴的剪切被限制,并使其尺寸接近于蜂花粉的大小。

随后,经过简单的低速离心处理,便能得到包载单颗蜂花粉的单分散乳液液滴,从而用于制备单分散的微胶囊。

蜂花粉广泛存在于自然界,是植物携带遗传物质的天然载体。花粉壁由两层组成:孢粉素构成的坚硬外壁层、和以多糖为基础的内壁层。

天然花粉的内腔主要充满细胞质和包括生物分子和细胞器团块在内的孢浆物质。据研究,某些花粉成分与人体免疫系统的相互作用,可能是导致花粉过敏的产生。

为了消除潜在的过敏反应,花粉首先需要经过脱脂处理,以去除外壁中的部分蛋白质和脂质。然后,使用酸处理或碱处理的方法,去除花粉颗粒内的残留蛋白质和孢质器官。

处理后的花粉,成为一种天然来源的空心微胶囊,故能适用于封装各种活性物质,比如油、蛋白质和纳米颗粒。

在进行脱脂和去蛋白之后,花粉颗粒表面显示出大量的微米尺度和纳米尺度的孔洞和开口。这些孔道结构会影响封活性物质在空心花粉微胶囊内的封装效果。

因此,他们将乳液界面工程的概念与空心花粉微胶囊加以结合,利用天然花粉外壁的固有特性,造出一种单分散的双层微胶囊体系,以减缓或避免封装活性物的泄露问题。

预计若干年后,本次成果在食品、化妆品、生物医学等活性物包载和递送等领域,能够产生重要的应用前景。

在微观中精雕细琢,于小液滴中蕴藏大自然

事实上,自然界既神奇又充满奥秘,很多原创性科研工作的启发都来源于自然。早在 5 年前,蒋航已经开始关注来源于自然的生物基胶体,蜂花粉便是他的关注对象之一。

读博的时候,他跟随香港中文大学魏涛教授研究乳液和微胶囊的相关课题,因此对单分散乳液有所了解。入职江南大学之后,蒋航给学生定下蜂花粉微胶囊的相关课题。

起初,只是想看看乳液中包裹蜂花粉会是怎样一种现象。既然蜂花粉的尺寸非常均一,那能否实现单个乳液液滴中仅仅包裹一颗花粉微粒从而实现单分散乳液的效果?

基于此,他们定下了基于蜂花粉的单分散 Pickering 乳液的课题。

首先,他们选取山茶花花粉作为研究对象、D5 硅油作为油相、气相二氧化硅作为乳化颗粒。通过蜂花粉的加入,在进行高转速的剪切均质乳化之后,所得到的乳液会存在两种截然不同的尺寸分布。

一种是包裹单颗花粉的大乳滴(>30 微米),另一种则是高速剪切形成的尺寸小于 5 微米的小乳滴。

随后,采取低速离心的操作,将两种尺寸分布的乳滴进行有效分离,从而收集得到单分散的油包水型 Pickering 乳液。

(来源:Advanced Functional Materials)

然而,采用此种方法制备的单分散乳液的产量,严重依赖于花粉微粒的数量。

过少的花粉加入量,虽然能显著增强乳液的单分散效果,但是产量却很低。过高的花粉加入量,则可能导致乳滴中包裹多颗花粉,反而影响乳液的整体均一性。

为此,他们不断优化油相-水相体积比、剪切转速、花粉加入量等影响因素,确定了单分散乳液制备的优选条件。并发现花粉的浓度哪怕达到水相的 20%,仍能保证乳滴中包裹单颗花粉。

但是,不同品种的蜂花粉形貌各异。于是,他们挑选许多不同植物来源的蜂花粉,包括以球状为代表的油菜花花粉、以突刺状为代表的向日葵花粉。

有趣的是,天然蜂花粉自带荧光属性,通过对水相与二氧化硅颗粒荧光染色,便能通过激光共聚焦荧光显微镜,清晰地观察到单分散 Pickering 乳液包裹花粉微粒的情况,也能对乳液结构立体表征。

他们还发现花粉的形貌形状,的确会对乳滴形貌产生影响。尤为突出的是向日葵花粉,其突刺状结构可以进一步防止乳滴的聚并,形成高度对称且稳定的单分散乳滴结构。

(来源:Advanced Functional Materials)

虽然利用花粉微粒能够制备单分散的乳液液滴,但是花粉本身占据了大部分内水相空间,不利于乳液和微胶囊体系的活性物包载。

为此,他们通过脱脂与脱蛋白的方法,得到了内腔中空的天然花粉微胶囊。随后,将花粉微胶囊代替天然花粉,结果发现仍能形成包裹单颗花粉微胶囊的单分散乳滴。

这样一来,许多活性物质便能事先包载于花粉微胶囊中,并再次通过乳化作用被包裹于乳滴内水相。

紧接着,通过界面溶胶-凝胶反应,课题组发现很容易就能在花粉微胶囊外,再次固化形成一层二氧化硅材料的保护壳,从而作为活性物经花粉微胶囊泄露的第二道“防护盾”。至此,研究正式告一段落。

(来源:Advanced Functional Materials)

日前,相关论文以《利用自然的力量:利用蜂花粉颗粒的单分散皮克林乳液液滴和蛋黄壳微胶囊》(Harnessing the Power of Nature: Monodisperse Pickering Emulsion Droplets and Yolk-Shell Microcapsules Utilizing Bee Pollen Particles)为题发在 Advanced Functional Materials[1]。

江南大学蒋航教授、江南大学研究生余姮星是共同一作,英国赫尔大学 Bernard P. Binks 和香港中文大学魏涛教授担任通讯。

图 | 相关论文(来源:Advanced Functional Materials)

而在未来,蒋航希望能继续拓展单分散乳液的方法学研究,以及开展基于花粉微胶囊的智能包载体系的研究,从而带来更多的实际应用。

参考资料:

1.Jiang, H., Yu, H., Guan, X., Jiang, W., Li, Y., Liu, W., ... & Ngai, T. (2024). Harnessing the Power of Nature: Monodisperse Pickering Emulsion Droplets and Yolk‐Shell Microcapsules Utilizing Bee Pollen Particles.Advanced Functional Materials, 2316510.

排版:希幔


结论和应用

上一篇:《小日子》高夏菁刚直播卖完惨就上链接,这不映射某网红吗?
下一篇:详细梳理五部“唐探”作品,揭秘两代Q的恩怨,完成最后的拼图!
更多更酷的内容分享
猜你感兴趣
分子科学革命性进展:科学家引领全新单分子检测技术革新

分子科学革命性进展:科学家引领全新单分子检测技术革新

光学异位素同位素共振断层扫描仪的新型分离技术。这是目前最敏感、无荧光标记的单分子识别技术之一。这一发现对药物发现、新材料研发等都有深远影响。科学家们以宏量制备的洋葱为模型测试了这项技术,结果显示该技术能够精准地检测和分析洋葱内的所有细胞,揭示其生物学过程和功能。这一突破性研究为我们打开了一个全新的、无需荧光标记就能准确识别人类分子的世界。研究者们表示,这一成果充分展示了强大的科研实力,并会对未来相关领域的研究产生积极影响。

生活常识 06.03
全新质生产力:2024单细胞蛋白质组学技术与产业应用研讨会——引领科技创新的崭新篇章

全新质生产力:2024单细胞蛋白质组学技术与产业应用研讨会——引领科技创新的崭新篇章

2024年单细胞蛋白质组学技术与产业应用研讨会将于浙江大学举行,旨在探讨质谱技术在单细胞研究中的关键科学问题,特别是如何利用这项技术更有效地获取高质量数据。秦伟捷是中国蛋白质科学中心(北京)的研究员,他的研究涉及蛋白质组新技术及其在疾病标志物和药物靶点筛选中的应用。

生活常识 04.19
中国科学家领军,研发液态金属新膜技术,打造全新“人造树叶”

中国科学家领军,研发液态金属新膜技术,打造全新“人造树叶”

中国科学院金属研究所刘岗研究团队与中外多个团队合作,研发出将半导体颗粒嵌入液态金属实现规模化成膜的新技术,并以此为基础成功构建出形神兼备的新型仿生人工光合成膜——“人工树叶”,可实现太阳能到化学能的转化。这项由中国科学家领导完成的重要新能源材料研究成果论文近日在国际学术期刊《自然-通讯》上发表。

热点资讯 02.27
科学家打造“逆有限元分析”数字孪生技术,可用于心脏病药物研发与评估

科学家打造“逆有限元分析”数字孪生技术,可用于心脏病药物研发与评估

“逆有限元分析”与“数字孪生”相结合,研究者采用该技术对心脏力学模型进行了改进,成功预测了动态医学图像中的心血管组织力学特性。预期在未来,这种技术将广泛应用于心脏病的诊断、治疗和预防,尤其在个性化医疗中发挥重要作用。这一研究还可能应用于医学教育和培训,以及心脏病患者的治疗管理。

生活常识 06.10
尿酸过高?达标后是继续用药还是停止?专业的医学问答

尿酸过高?达标后是继续用药还是停止?专业的医学问答

血尿酸高的患者在体检时被发现在尿酸过高,这一现象与痛风有着密切的关系。血尿酸浓度和痛风的发生风险之间存在着明显的正向关系。降尿酸成为了治疗痛风的关键。然而,仅依靠控制血尿酸水平还不够,高尿酸血症是慢性肾病、高血压、心脑血管疾病及糖尿病等疾病的独立危险因素。因此,在有相应基础疾病的情况下,对血尿酸水平应更重视并采取早期干预措施。需要注意的是,血尿酸达标并不能标志着可以停止药物治疗,而应该根据具体的情况和原因来调整治疗方案。

生活常识 09.14
进口药消失:为何患者感觉难以购买?揭秘集采的影响与解决方案

进口药消失:为何患者感觉难以购买?揭秘集采的影响与解决方案

进口原研药在国内临床的真实使用情况存在较大争议。目前来看,进口药难买,尤其是针对MPP的抗生素阿奇霉素。阿奇霉素并非完全消失,虽然国内已有多种剂型可供选择,但仍然难以满足消费者的需求。本文试图从不同的角度分析这一问题,包括政策因素、企业控制和价格等方面。

生活常识 09.14
科技助力,让梦想照进现实——新型人工智能在乡村教育中的应用与前景

科技助力,让梦想照进现实——新型人工智能在乡村教育中的应用与前景

导他们走向更加广阔的天地,也为家长们的育儿观念带来了启发。家长们纷纷表示会将孩子的这种创新精神带入到日常生活中,让孩子们能够更好地认识自己,了解世界。 从以上内容来看,这次宁波财经学院的“AI数字绘画畅想课”取得了良好的反响。它不仅可以让孩子充分发挥想象力,提升创造力,还可以让家长了解到孩子的成长过程和学习成果。这是一次富有教育意义且具有时代气息的教学活动。

生活常识 09.14
坚守开远山区36年,他的坚持成就孩子们的未来!

坚守开远山区36年,他的坚持成就孩子们的未来!

李永林是一位乡村教师,扎根山区36年,为家乡教育奉献力量。他深知教育的重要性,希望用知识改变贫困代际传递,解决孩子们的学习难题。他身兼数职,甚至还要自己掏钱购买学生的课本和文具。虽然已经离开讲台多年,但他仍然像初登讲台一样,热爱学习、勇于进取。如今,他的学生已走出了大山,走进了更广阔的天地。

生活常识 09.14
南昌工程学院2024级新生家长见面会盛大召开

南昌工程学院2024级新生家长见面会盛大召开

南昌工程学院校长刘祖文在学校举行“校长有约——2024级新生家长见面会”,实现“三全育人”改革并深化家校互动,增强学校和学生的沟通联系。该见面会有来自全国的800名2024级新生家长参加,南昌工程学院校长刘祖文分享了学校的概况和未来的规划,让家长了解学校的发展方向。

生活常识 09.14
九万山:黑枕王鹟的新发现和保护动态

九万山:黑枕王鹟的新发现和保护动态

2024年8月底,在九万山自然保护区科研课题小组成员发现了新记录黑枕王鹟。

生活常识 09.14
江河冰源:探索冬季江源冰川 - 冰川变薄带来的生态问题和应对策略

江河冰源:探索冬季江源冰川 - 冰川变薄带来的生态问题和应对策略

都没有成功。科考队只能继续等待机会。 总之,在全球变暖的趋势下,长江源区的冬克玛底冰川正在经历一场严峻的挑战。冰川的厚度正在减薄,变得更加脆弱,这将增加我国极端气候事件的发生频率。尽管如此,科学家们并没有放弃,他们将继续努力保护冰川,并为未来的气候变化研究和区域水资源管理提供科学依据。

生活常识 09.14
填补空白!特应性皮炎治疗领域首个‘中国新药’上市

填补空白!特应性皮炎治疗领域首个‘中国新药’上市

我国首个自主研发特应性皮炎生物制剂获批上市,该药以IL-4Ra为靶点,通过阻断IL-4和IL-13与IL-4Ra受体的结合,减轻炎症反应,改善症状。这是特应性皮炎治疗领域的第一个“中国新药”,将为中重度特应性皮炎患者带来更好的治疗选择。司普奇拜单抗III期临床研究在国内已完成,结果显示其疗效显著。

生活常识 09.14
专家建议:控制慢性阻塞性肺病的预防,别忽视慢阻肺被纳入基本公共卫生服务

专家建议:控制慢性阻塞性肺病的预防,别忽视慢阻肺被纳入基本公共卫生服务

国家卫生健康委宣布将人均基本公共卫生服务经费补助标准提高5元,达到94元,这是为了扩大老年人、慢性病患者、农村妇女“两癌”检查等项目的覆盖面,以应对慢性阻塞性肺疾病的威胁。 官方理由是,慢阻肺病是我国常见的慢性呼吸系统疾病之一,同时也是仅次于高血压、糖尿病的第三大常见慢性病。在过去的两年中,国家基本公共卫生服务项目的资金已经增加了许多,但是仍然不能满足广大民众对于慢性疾病的预防和治疗需求。 随着政策的推进,预计未来几年内,我们可能会看到更多相关服务项目得以开展,并且与慢性病防控紧密结合,共同保护人民健康。

生活常识 09.13
警惕这些身体异味可能预示着健康问题,请重视与处理

警惕这些身体异味可能预示着健康问题,请重视与处理

许多人认为体臭是因为不注意卫生导致的,但如果你家中有糖尿病患者或者胃肠道疾病患者,你可能会闻到烂苹果、酸臭、氨臭或腐败味。这些都是身体发出的不友好的异味,可能提示着身体出现了疾病。建议保持良好的生活习惯,定期体检,并避免吸烟和过量饮酒。

生活常识 09.13