全球化学界领军者Claude 3再创佳绩,横扫专业领域与人工智能(GPT-4)较量:GPT-4望尘莫及的学术地位与实测实力一览无遗!

2024-03-28 热点资讯 关注公众号
"全球化学界领军者Claude 3再创佳绩,横扫专业领域与人工智能(GPT-4)较量:GPT-4望尘莫及的学术地位与实测实力一览无遗!"
Claude 3 Opus,一个由通用任务到专业化学任务成功转型的智能模型,展现出了在大多数人工智能系统基准测试中的优异表现。在特定专业领域——化学任务方面,其性能堪忧,团队通过专门针对化学任务指令微调的数据集SMolInstruct,构建了一套LlaSMol模型。该模型在14种专业任务上进行了优化微调,展现出宽广的化学知识涵盖范围,并在160万个不同分子样本上证明了自己的强大性能,与包括Llama 2、Code Llama和Mistral在内的三种已知LLM对比下,具有显著优势。此研究成果揭示了新一代模型在提升专业领域人工智能表现的关键所在,为实现相关技术突破提供了新的方向。
"全球化学界领军者Claude 3再创佳绩,横扫专业领域与人工智能(GPT-4)较量:GPT-4望尘莫及的学术地位与实测实力一览无遗!"
Claude 3 Opus: A Revolutionary Approach to Achieving Expert-level Performance in the Chemistry Field with Specialized SMOLInstruct Dataset
"全球化学界领军者Claude 3再创佳绩,横扫专业领域与人工智能(GPT-4)较量:GPT-4望尘莫及的学术地位与实测实力一览无遗!"
Claude 3 Opus is a testament to the remarkable success of AI models in achieving outstanding performance on various professional tasks, particularly in the chemistry field. The model's impressive performance in the context of SMOLInstruct dataset demonstrates its adaptability and broad knowledge base, making it an essential tool for professionals working in this specialized domain.
"全球化学界领军者Claude 3再创佳绩,横扫专业领域与人工智能(GPT-4)较量:GPT-4望尘莫及的学术地位与实测实力一览无遗!"
SMOLInstruct, a large-scale dataset created by researchers at OpenAI, comprises over 140,000 molecules in diverse chemical structures and functions. This dataset aims to provide a comprehensive understanding of molecular systems and their behavior under various conditions, thereby contributing significantly to our understanding of chemical reactions and substances at both atomic and宏观 scales. In light of the importance of the chemistry field for numerous applications, including drug discovery, energy production, environmental monitoring, and catalysis, the development of advanced chemometric models becomes crucial to addressing the challenges posed by these complex systems.
"全球化学界领军者Claude 3再创佳绩,横扫专业领域与人工智能(GPT-4)较量:GPT-4望尘莫及的学术地位与实测实力一览无遗!"
To address the limitations of existing machine learning (ML) approaches, the research team tailored the SMOLInstruct dataset specifically to include specific chemical tasks in the field of chemistry. Specifically, they employed a dedicated task-oriented approach called LlaSMol, which was built based on a novel technique called fine-tuning, where the model is trained on a smaller subset of molecules from the original SMOLInstruct dataset that focus on a specific task or application. By doing so, the researchers sought to enhance the model's ability to understand and solve chemically-related problems by fine-tuning its learned representations across multiple domains.
"全球化学界领军者Claude 3再创佳绩,横扫专业领域与人工智能(GPT-4)较量:GPT-4望尘莫及的学术地位与实测实力一览无遗!"
The resulting LlaSMol model has been trained on a total of 160 million different molecular samples across 14 distinct tasks, covering various aspects of organic, inorganic, and amine chemistry. These tasks range from generating reaction mechanism sketches to predicting molecular properties, such as reactivity, boiling points, and solubility, among others. The performance of the LlaSMol model in these tasks highlights its exceptional capacity to generalize and improve on previously seen benchmarks in the literature, demonstrating that it can effectively capture and utilize the unique features of each chemical problem encountered in real-world scenarios.
Comparing the performance of Claude 3 Opus to other well-known chemometric models, such as Llama 2, Code Llama, and Mistral, the results reveal significant advantages. Llama 2, which was designed specifically for identifying key functional groups in molecules, outperforms Claude 3 Opus in several selected tasks due to its ability to extract relevant structural information from SMOLInstruct. However, Llama 2 lacks the flexibility and versatility to tackle more complex chemical tasks, particularly those involving multi-step processes or interactions between multiple chemical species. On the other hand, Code Llama and Mistral excel in single-step reaction prediction tasks but struggle with handling high-dimensional data sets like SMOLInstruct, which requires efficient feature extraction and manipulation.
One factor that contributes to Claude 3 Opus' superiority in the chemistry field lies in its ability to incorporate specialized SMOLInstruct data into its training process. By fine-tuning the model using a specialized dataset, it learns to leverage the rich chemical structure and functional information inherent in the SMOLInstruct data set, enabling it to address a wide range of chemically-related tasks with a reduced reliance on external libraries or pre-trained models. This not only enhances the model's performance but also enables it to better interpret and make predictions on new, unseen molecular datasets.
Furthermore, the use of fine-tuning techniques ensures that the LlaSMol model maintains its robustness and generalization capabilities even when exposed to variations in the training data, ensuring that it remains effective in real-world applications. This adaptability allows the model to learn from a variety of sources and nuances within the SMOLInstruct dataset, improving its performance across a wider range of chemical tasks.
In conclusion, the success of Claude 3 Opus in the SMOLInstruct dataset showcases the powerful potential of modern deep learning models in tackling complex chemistry problems. By leveraging the specialized SMOLInstruct dataset and fine-tuning techniques, Claude 3 Opus showcases the ability to generalize and adapt to a wide range of chemically-related tasks, outperforming state-of-the-art chemometric models. This research highlights the importance of developing specialized datasets tailored to specific chemical tasks, alongside advanced fine-tuning techniques, in driving the development of expert-level AI models in the chemistry field. As such, Claude 3 Opus represents a significant step forward in addressing the challenges faced by chemists and chemical engineers seeking to optimize their approaches to solving complex chemical problems, opening up new avenues for innovation and practical applications in the scientific community.

上一篇:火眼金睛的“神探”医生 诊室里锦旗挂满墙
下一篇:小林制药红曲保健品已致4人死亡,红曲是什么?它有千年历史,人人都能接触到
更多更酷的内容分享
猜你感兴趣
科创板日报记者亲测:Claude 3模型威力炸裂,超越GPT-4?

科创板日报记者亲测:Claude 3模型威力炸裂,超越GPT-4?

Anthropic发布的Claude 3模型被誉为超越GPT-4的最快、最强大的人工智能模型。该系列包括三个模型,具有强大的视觉能力。然而,《科创板日报》记者测试发现,尽管Claude 3 Opus在图片识别上有更多细节表现,但在准确率和本科生知识水平上并未展现出明显优势。

热点资讯 03.08
大模型新王Claude 3实测!各项能力给跪,打麻将也会,确实比GPT-4好用

大模型新王Claude 3实测!各项能力给跪,打麻将也会,确实比GPT-4好用

克雷西 丰色 发自 凹非寺 量子位 | 公众号 QbitAI OpenAI不可战胜的神话,已经被打破了。 随着Claude 3(支持中文)一夜登陆,榜单性...

热点资讯 03.05
Claude 3比GPT-4强?我们亲自试用,一探究竟!

Claude 3比GPT-4强?我们亲自试用,一探究竟!

Anthropic发布了新版本的大模型Claude 3,超越了GPT-4,成为最强大模型。Anthropic声称在推理、数学、编码、多语言理解和视觉方面树立了新的行业基准。虽然 Anthropic和OpenAI有复杂的关系,但这次Claude 3的发布让Anthropic扬眉吐气。

热点资讯 03.06
Claude 3震撼登场:超越GPT-4,理解力逼近人类!

Claude 3震撼登场:超越GPT-4,理解力逼近人类!

Anthropic发布了第三代AI模型Claude 3系列,包括Claude 3 Opus、Claude 3 Sonnet和Claude 3 Haiku。Claude 3 Opus是该系列的最强版本,性能超过GPT-4,具有接近人类的理解能力,可以处理开放式提示和复杂任务。Claude 3系列还具有与其他领先模型同等的复杂视觉功能,可以处理各种视觉格式。目前,Claude 3 Opus和Claude 3 Sonnet已可通过API直接访问,Claude 3 Sonnet还可以在部分地区的网站上免费体验。

生活常识 03.05
苹果即将对Siri进行重大变革:发布会日期曝光!

苹果即将对Siri进行重大变革:发布会日期曝光!

苹果正开发更强大且具有对话功能的Siri数字助手,旨在赶超OpenAI的ChatGPT和其他语音服务。此新型Siri将采用高级的语言模型,支持双向对话,并且更精准地控制第三方应用。此项目已进行了13年,但仍然落后于Google的Gemini等竞争对手。苹果计划最早在2025年发布新的Siri,但确切日期仍有不确定性。此外,近期发布的招聘信息也显示,苹果计划推出更强大的Siri。

热点资讯 11.23
37岁导演再次开山之作:《庆余年2》演绎主角,他的新挑战引行业热议

37岁导演再次开山之作:《庆余年2》演绎主角,他的新挑战引行业热议

本文主要讲述了悬疑剧《宿敌》上线后引发的关注度,以及多个演员在其中的角色塑造。包括男主角廖凡、女主角黄萧、胡夏峰和国安警官肖波等,他们分别在剧中表现出层次感分明、立体饱满的人物形象和出色的表演。沈晓海作为一名熟知多年的老戏骨,在《宿敌》中的出色表现也受到了观众的一致好评。这些演员们在剧中共同营造了一个引人入胜的故事,并且展现出各自的特色和魅力。文章最后强调了这部电视剧的价值所在,呼吁更多优秀的影视作品出现。

热点资讯 11.23
《小巷人家》全体告别成员致敬与告别:王安宇手书歌词,周洁琼弹琵琶,闫妮蒋欣言简意赅

王安宇告别《小巷人家》,留下手写歌词与心声;周洁琼、闫妮、蒋欣齐唱,歌曲简单却深情。告别日常,致敬同行!

《小巷人家》全体告别成员致敬与告别:王安宇手书歌词,周洁琼弹琵琶,闫妮蒋欣言简意赅 王安宇告别《小巷人家》,留下手写歌词与心声;周洁琼、闫妮、蒋欣齐唱,歌曲简单却深情。告别日常,致敬同行!

度,乐观且坚强的林栋哲,犹如一缕阳光照亮了整个小巷。面对结束,四人分别发布告别信,感谢付出与陪伴。蒋欣饰演的宋莹圆满告别华妃的角色,闫妮塑造的黄玲突破难关,郭晓东塑造的庄超英深具责任感,李光洁扮演的林武峰则令人称赞。最后四位主角以微笑告别,完美谢幕。剧中情感深厚,让人感慨万千。

热点资讯 11.23
李行亮为何没有朋友?原因解析:朋友被麦琳清空

李行亮为何没有朋友?原因解析:朋友被麦琳清空

麦琳炒热了自己的名声并造成争议,同时也揭露了好友的贪婪行为。尽管如此,500哥并未因此生气,并表示对朋友充满了尊重。

热点资讯 11.23
韩国「标志」三人组合能否延续传奇,新曲能否引发争议?

韩国「标志」三人组合能否延续传奇,新曲能否引发争议?

BigBANG即将推出的新曲将在11月22日下午2点在和韩国国内外各大音乐平台发布。权志龙(G-Dragon)与BIGBANG成员太阳(Taeyang)、大声(Daesung)一起参与新曲创作,并邀请银河公司旗下的银河乐团担当伴奏。BigBANG计划在2024年MAMA颁奖礼上首秀新曲,但银河公司还未对此消息进行确认。关于权志龙的回归,银河乐团表示相信他会带来一场标志性的舞台表演。BigBANG上一次以团体形式发布作品是在2022年,共有四名成员参与其中,其中权志龙、太阳、大声和崔胜铉均退出组合。BigBANG目前仍在法律争议中,除崔胜炫外,李胜利因“ Burning Sun”夜店丑闻而退团。

热点资讯 11.23
泰国女总理与全球小姐冠军,30厘米高差背后的气质实力较量

泰国女总理与全球小姐冠军,30厘米高差背后的气质实力较量

泰国新任总理接见环球小姐季军奥帕尔,对其在墨西哥比赛的表现表示赞扬,并邀请其来政府大楼做客,意图通过文化交流和推广泰国文化走向世界。两人交谈中探讨了传播泰国历史和文化、展示传统纺织艺术和手工艺品等问题,旨在提升泰国文化的国际影响力。奥帕尔以其过人的身高和气质赢得了现场观众的认可。尽管在身高上存在差距,但佩通坦凭借自身的魅力和气场成功吸引了人们的眼球。

热点资讯 11.23
中美高层会谈:拜登坚持不希望改变台海现状

中美高层会谈:拜登坚持不希望改变台海现状

拜登在亚太经合组织会议上对中国表达了坚定的立场,不支持任何形式的“台独”。同时,他也警告了中国不要利用台湾问题来影响美国与其他国家的关系。然而,在台湾问题上,拜登并没有做出根本性的改变,仍然坚持强硬态度。在会晤中,拜登不仅向解放军提出了要求,还在强调要和平解决分歧,并呼吁两岸以和平方式解决问题。目前来看,中美之间的僵持局面可能难以化解,而中国已经做好了充分的准备应对可能出现的情况。

热点资讯 11.23
特朗普内阁成形遇阻 玛斯克紧急划清反华立场

特朗普内阁成形遇阻 玛斯克紧急划清反华立场

特朗普胜选后,筹谋内阁人选,两大反华鹰派人物马特·盖茨和皮特·海格塞斯因深陷丑闻位置不保,特朗普提名前佛罗里达州检长帕姆·邦迪为司法部长提名人,但盖茨因吸毒、未成年人性交易丑闻主动放弃司法部长提名。马斯克被质疑与特朗普内阁成员选择有关,他急忙澄清,避免引火烧身。特朗普亲自撤回对马斯克的提名,称不需要浪费时间在无谓的争斗上,盖茨在参议院确认过程中将面临严峻挑战,特朗普对此感到欣慰。特朗普认可盖茨为提名做出的努力,但对于是否会影响新政府注意力,特朗普没有明确表态。

热点资讯 11.23
拜登最终出马,秘鲁、巴西落地未戴红毯,落幕含辛茹苦

拜登最终出马,秘鲁、巴西落地未戴红毯,落幕含辛茹苦

拜登总统两次在亚太经合组织和G20峰会上缺席,凸显其政治影响力被边缘化,尚未成为全球经济的主要领导者之一。其“被被打两耳光”的形象也反映了他在国内的威望下滑以及国际地位下降。

热点资讯 11.23
俄罗斯否决安理会15国停火草案,国际局势面临新挑战

俄罗斯否决安理会15国停火草案,国际局势面临新挑战

争要求保持和平解决。

热点资讯 11.23